Author Affiliations
Abstract
1 Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
2 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637371, Singapore
3 Interdisciplinary Graduate Program, Energy Research Institute@NTU, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
4 The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore
5 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
6 Berkeley Educational Alliance for Research in Singapore (BEARS), Ltd., 1 CREATE Way, Singapore 138602, Singapore
Transition metal dichalcogenides (TMDs) and perovskites are among the most attractive and widely investigated semiconductors in the recent decade. They are promising materials for various applications, such as photodetection, solar energy harvesting, light emission, and many others. Combining these materials to form heterostructures can enrich the already fascinating properties and bring up new phenomena and opportunities. Work in this field is growing rapidly in both fundamental studies and device applications. Here, we review the recent findings in the perovskite-TMD heterostructures and give our perspectives on the future development of this promising field. The fundamental properties of the perovskites, TMDs, and their heterostructures are discussed first, followed by a summary of the synthesis methods of the perovskites and TMDs and the approaches to obtain high-quality interfaces. Particular attention is paid to the TMD-perovskite heterostructures that have been applied in solar cells and photodetectors with notable performance improvement. Finally through our analysis, we propose an outline on further fundamental studies and the promising applications of perovskite-TMD heterostructures.
transition metal dichalcogenides perovskites heterostructures photodetectors solar cells 2D materials 
Opto-Electronic Science
2022, 1(8): 220006
Author Affiliations
Abstract
1 Institute of Micro-nano Photonics & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
2 Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
3 College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387, China
4 e-mail: jly@njust.edu.cn
5 e-mail: zexiang@ntu.edu.sg
Understanding the mode’s origin in planar metamaterials is fundamental for related applications in nanophotonics and plasmonics. For complex planar metamaterials, conventional analysis that directly obtains the final charge/current distribution of a mode is usually difficult in helping to understand the mode’s origin. In this paper, we propose a mode evolution method (MEM) with a core analysis tool, i.e., plasmonic evolution maps (PEMs), to describe the mode evolution in several complementary planar metamaterials with designed plasmonic atoms/molecules. The PEMs could not only clearly explain a mode’s origin, but also reveal the role of a structure’s symmetry in the mode formation process. The MEM with PEMs can work as a simple, efficient, and universal approach for the mode analysis in different kinds of planar metamaterials.
Photonics Research
2021, 9(1): 01000073

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!